RTK使用人員必須了解的10大基本知識
作者:adminchy 發(fā)布于:2016-06-02 18:23:00 文字:【大】【中】【小】

 

 

 

RTK作為現(xiàn)代化測量中的測繪儀器,已經(jīng)非常普及.RTK在測量中的優(yōu)越性也是不言而喻.為了能讓RTK的優(yōu)越性能在使用中充分的發(fā)揮出來,為了能讓RTK使用人員能靈活的應(yīng)用RTK,我認為RTK使用人員必須了解以下的基本知識:

 

1.GPS的概念及組成

 

GPS(Global Positioning System)即全球定位系統(tǒng),是由美國建立的一個衛(wèi)星導(dǎo)航定位系統(tǒng),利用該系統(tǒng),用戶可以在全球范圍內(nèi)實現(xiàn)全天候、連續(xù)、實時的三維導(dǎo)航定位和測速;另外,利用該系統(tǒng),用戶還能夠進行高精度的時間傳遞和高精度的精密定位。

  GPS計劃始于1973年,已于1994年進入完全運行狀態(tài)(FOC[2])。GPS的整個系統(tǒng)由空間部分、地面控制部分和用戶部分所組成:

 

  空間部分

  GPS的空間部分是由24顆GPS工作衛(wèi)星所組成,這些GPS工作衛(wèi)星共同組成了GPS衛(wèi)星星座,其中21顆為可用于導(dǎo)航的衛(wèi)星,3顆為活動的備用衛(wèi)星。這24顆衛(wèi)星分布在6個傾角為55°的軌道上繞地球運行。衛(wèi)星的運行周期約為12恒星時。每顆GPS工作衛(wèi)星都發(fā)出用于導(dǎo)航定位的信號。GPS用戶正是利用這些信號來進行工作的。

 

  控制部分

  GPS的控制部分由分布在全球的由若干個跟蹤站所組成的監(jiān)控系統(tǒng)所構(gòu)成,根據(jù)其作用的不同,這些跟蹤站又被分為主控站、監(jiān)控站和注入站。主控站有一個,位于美國克羅拉多(Colorado)的法爾孔(Falcon)空軍基地,它的作用是根據(jù)各監(jiān)控站對GPS的觀測數(shù)據(jù),計算出衛(wèi)星的星歷和衛(wèi)星鐘的改正參數(shù)等,并將這些數(shù)據(jù)通過注入站注入到衛(wèi)星中去;同時,它還對衛(wèi)星進行控制,向衛(wèi)星發(fā)布指令,當工作衛(wèi)星出現(xiàn)故障時,調(diào)度備用衛(wèi)星,替代失效的工作衛(wèi)星工作;另外,主控站也具有監(jiān)控站的功能。監(jiān)控站有五個,除了主控站外,其它四個分別位于夏威夷(Hawaii)、阿松森群島(Ascencion)、迭哥伽西亞(Diego Garcia)、卡瓦加蘭(Kwajalein),監(jiān)控站的作用是接收衛(wèi)星信號,監(jiān)測衛(wèi)星的工作狀態(tài);注入站有三個,它們分別位于阿松森群島(Ascencion)、迭哥伽西亞(Diego Garcia)、卡瓦加蘭(Kwajalein),注入站的作用是將主控站計算出的衛(wèi)星星歷和衛(wèi)星鐘的改正數(shù)等注入到衛(wèi)星中去.

 

 

用戶部分

  GPS的用戶部分由GPS接收機、數(shù)據(jù)處理軟件及相應(yīng)的用戶設(shè)備如計算機氣象儀器等所組成。它的作用是接收GPS衛(wèi)星所發(fā)出的信號,利用這些信號進行導(dǎo)航定位等工作。以上這三個部分共同組成了一個完整的GPS系統(tǒng)。

 

2.GPS發(fā)射的信號

 

GPS衛(wèi)星發(fā)射兩種頻率的載波信號,即頻率為1575.42MHz的L1載波和頻率為1227.60HMz的L2載波,它們的頻率分別是基本頻率10.23MHz的154倍和120倍,它們的波長分別為19.03cm和24.42cm。在L1和L2上又分別調(diào)制著多種信號,這些信號主要有:

 

  C/A碼

  C/A碼又被稱為粗捕獲碼,它被調(diào)制在L1載波上,是1MHz的偽隨機噪聲碼(PRN碼),其碼長為1023位(周期為1ms)。由于每顆衛(wèi)星的C/A碼都不一樣,因此,我們經(jīng)常用它們的PRN號來區(qū)分它們。C/A碼是普通用戶用以測定測站到衛(wèi)星間的距離的一種主要的信號。

 

  P碼

  P碼又被稱為精碼,它被調(diào)制在L1和L2載波上,是10MHz的偽隨機噪聲碼,其周期為七天。在實施AS時,P碼與W碼進行模二相加生成保密的Y碼,此時,一般用戶無法利用P碼來進行導(dǎo)航定位。

 

  Y碼

  見P碼。

 

  導(dǎo)航信息

導(dǎo)航信息被調(diào)制在L1載波上,其信號頻率為50Hz,包含有GPS衛(wèi)星的軌道參數(shù)、衛(wèi)星鐘改正數(shù)和其它一些系統(tǒng)參數(shù)。用戶一般需要利用此導(dǎo)航信息來計算某一時刻GPS衛(wèi)星在地球軌道上的位置,導(dǎo)航信息也被稱為廣播星歷。

 

3.GPS定位的原理

 

GPS定位的基本原理是根據(jù)高速運動的衛(wèi)星瞬間位置作為已知的起算數(shù)據(jù),采用空間距離后方交會的方法,確定待測點的位置。如下圖所示,假設(shè)t時刻在地面待測點上安置GPS接收機,可以測定GPS信號到達接收機的時間△t,再加上接收機所接收到的衛(wèi)星星歷等其它數(shù)據(jù)可以確定以下四個方程式:

 

  上述四個方程式中待測點坐標x、 y、 z 和Vto為未知參數(shù),其中di=c△ti (i=1、2、3、4)。

  di (i=1、2、3、4) 分別為衛(wèi)星1、衛(wèi)星2、衛(wèi)星3、衛(wèi)星4到接收機之間的距離。

  △ti (i=1、2、3、4) 分別為衛(wèi)星1、衛(wèi)星2、衛(wèi)星3、衛(wèi)星4的信號到達接收機所經(jīng)歷的時間。

  c為GPS信號的傳播速度(即光速)。

 

  四個方程式中各個參數(shù)意義如下:

    x、y、z 為待測點坐標的空間直角坐標。

    xi 、yi 、zi (i=1、2、3、4) 分別為衛(wèi)星1、衛(wèi)星2、衛(wèi)星3、衛(wèi)星4在t時刻的空間直角坐標,

  可由衛(wèi)星導(dǎo)航電文求得。

    Vt i (i=1、2、3、4) 分別為衛(wèi)星1、衛(wèi)星2、衛(wèi)星3、衛(wèi)星4的衛(wèi)星鐘的鐘差,由衛(wèi)星星歷提供。

    Vto為接收機的鐘差。

 

  由以上四個方程即可解算出待測點的坐標x、y、z 和接收機的鐘差Vto 。

 

  目前GPS系統(tǒng)提供的定位精度是優(yōu)于10米,而為得到更高的定位精度,我們通常采用差分GPS技術(shù):將一臺GPS接收機安置在基準站上進行觀測。根據(jù)基準站已知精密坐標,計算出基準站到衛(wèi)星的距離改正數(shù),并由基準站實時將這一數(shù)據(jù)發(fā)送出去。用戶接收機在進行GPS觀測的同時,也接收到基準站發(fā)出的改正數(shù),并對其定位結(jié)果進行改正,從而提高定位精度。差分GPS分為兩大類:偽距差分和載波相位差分。 http://www.3s8.cn中國3S專業(yè)站

 

  1. 偽距差分原理

  這是應(yīng)用最廣的一種差分。在基準站上,觀測所有衛(wèi)星,根據(jù)基準站已知坐標和各衛(wèi)星的坐標,求出每顆衛(wèi)星每一時刻到基準站的真實距離。再與測得的偽距比較,得出偽距改正數(shù),將其傳輸至用戶接收機,提高定位精度。這種差分,能得到米級定位精度,如沿海廣泛使用的“信標差分”。

 

  2.載波相位差分原理

  載波相位差分技術(shù)又稱RTK(Real Time Kinematic)技術(shù),是實時處理兩個測站載波相位觀測量的差分方法。即是將基準站采集的載波相位發(fā)給用戶接收機,進行求差解算坐標。載波相位差分可使定位精度達到厘米級。大量應(yīng)用于動態(tài)需要高精度位置的領(lǐng)域。

 

4.GPS定位的誤差源

 

我們在利用GPS進行定位時,會受到各種各樣因素的影響。影響GPS定位精度的因素可分為以下四大類:

 

一、與GPS衛(wèi)星有關(guān)的因素

  1.SA政策

  美國政府從其國家利益出發(fā),通過降低廣播星歷精度(技術(shù))、在GPS基準信號中加入高頻抖動(技術(shù))等方法,人為降低普通用戶利用GPS進行導(dǎo)航定位時的精度。

  2.衛(wèi)星星歷誤差

  在進行GPS定位時,計算在某時刻GPS衛(wèi)星位置所需的衛(wèi)星軌道參數(shù)是通過各種類型的星歷提供的,但不論采用哪種類型的星歷,所計算出的衛(wèi)星位置都會與其真實位置有所差異,這就是所謂的星歷誤差。

  3.衛(wèi)星鐘差

  衛(wèi)星鐘差是GPS衛(wèi)星上所安裝的原子鐘的鐘面時與GPS標準時間之間的誤差。

  4.衛(wèi)星信號發(fā)射天線相位中心偏差

  衛(wèi)星信號發(fā)射天線相位中心偏差是GPS衛(wèi)星上信號發(fā)射天線的標稱相位中心與其真實相位中心之間的差異。

 

二、與傳播途徑有關(guān)的因素

  1.電離層延遲

  由于地球周圍的電離層對電磁波的折射效應(yīng),使得GPS信號的傳播速度發(fā)生變化,這種變化稱為電離層延遲。電磁波所受電離層折射的影響與電磁波的頻率以及電磁波傳播途徑上電子總含量有關(guān)。

  2.對流層延遲

  由于地球周圍的對流層對電磁波的折射效應(yīng),使得GPS信號的傳播速度發(fā)生變化,這種變化稱為對流層延遲。電磁波所受對流層折射的影響與電磁波傳播途徑上的溫度、濕度和氣壓有關(guān)。

 

3.多路徑效應(yīng)

  由于接收機周圍環(huán)境的影響,使得接收機所接收到的衛(wèi)星信號中還包含有各種反射和折射信號的影響,這就是所謂的多路徑效應(yīng)。

 

三、與接收機有關(guān)的因素

  1.接收機鐘差

  接收機鐘差是GPS接收機所使用的鐘的鐘面時與GPS標準時之間的差異。

  2.接收機天線相位中心偏差

  接收機天線相位中心偏差是GPS接收機天線的標稱相位中心與其真實的相位中心之間的差異。

  3.接收機軟件和硬件造成的誤差

  在進行GPS定位時,定位結(jié)果還會受到諸如處理與控制軟件和硬件等的影響。

 

四、其它

  1.GPS控制部分人為或計算機造成的影響

  由于GPS控制部分的問題或用戶在進行數(shù)據(jù)處理時引入的誤差等。

  2.數(shù)據(jù)處理軟件的影響

  數(shù)據(jù)處理軟件的算法不完善對定位結(jié)果的影響。

 

5.GPS測量中坐標系統(tǒng)、坐標系的轉(zhuǎn)換過程

 

引用:

摘要:GPS在測量領(lǐng)域得到了廣泛的應(yīng)用,本文介紹將GPS所采集到的WGS-84坐標轉(zhuǎn)換成工程所需的坐標的過程。

  關(guān)鍵詞:GPS 坐標系統(tǒng) 坐標系 轉(zhuǎn)換

 

  一、概述GPS及其應(yīng)用

 

  GPS即全球定位系統(tǒng)(Global Positioning System)是美國從本世紀70年**始研制,歷時20年,耗資200億美元,于1994年全面建成的衛(wèi)星導(dǎo)航定位系統(tǒng)。作為新一代的衛(wèi)星導(dǎo)航定位系統(tǒng)經(jīng)過二十多年的發(fā)展,已成為在航空、航天、軍事、交通運輸、資源勘探、通信氣象等所有的領(lǐng)域中一種被廣泛采用的系統(tǒng)。我國測繪部門使用GPS也近十年了,它最初主要用于高精度大地測量和控制測量,建立各種類型和等級的測量控制網(wǎng),現(xiàn)在它除了繼續(xù)在這些領(lǐng)域發(fā)揮著重要作用外還在測量領(lǐng)域的其它方面得到充分的應(yīng)用,如用于各種類型的工程測量、變形觀測、航空攝影測量、海洋測量和地理信息系統(tǒng)中地理數(shù)據(jù)的采集等。GPS以測量精度高;操作簡便,儀器體積小,便于攜帶;全天候操作;觀測點之間無須通視;測量結(jié)果統(tǒng)一在WGS84坐標下,信息自動接收、存儲,減少繁瑣的中間處理環(huán)節(jié)、高效益等顯著特點,贏得廣大測繪工作者的信賴。

 

  二、GPS測量常用的坐標系統(tǒng)

 

  1.WGS-84坐標系

 

  WGS-84坐標系是目前GPS所采用的坐標系統(tǒng),GPS所發(fā)布的星歷參數(shù)就是基于此坐標系統(tǒng)的。 WGS-84坐標系統(tǒng)的全稱是World Geodical System-84(世界大地坐標系-84),它是一個地心地固坐標系統(tǒng)。WGS-84坐標系統(tǒng)由美國國防部制圖局建立,于1987年取代了當時GPS所采用的坐標系統(tǒng)―WGS-72坐標系統(tǒng)而成為GPS的所使用的坐標系統(tǒng)。WGS-84坐標系的坐標原點位于地球的質(zhì)心,Z軸指向BIH1984.0定義的協(xié)議地球極方向,X軸指向BIH1984.0的啟始子午面和赤道的交點,Y軸與X軸和Z軸構(gòu)成右手系。采用橢球參數(shù)為: a = 6378137m f = 1/298.257223563

 

  2.1954年北京坐標系

 

  1954年北京坐標系是我國目前廣泛采用的大地測量坐標系,是一種參心坐標系統(tǒng)。該坐標系源自于原蘇聯(lián)